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Abstract
The quantum trajectory method (QTM) will be introduced, and an
approximation to the QTM known as Fermi molecular dynamics (FMD) will
be described. Results of simulations based on FMD will be mentioned for
specific nonequilibrium systems dominated by Coulomb interactions.

PACS numbers: 02.70.Ns, 52.65.Yy, 03.65.−w

For a single particle moving under the influence of a time-dependent potential U(�r, t), the
time-dependent Schrödinger equation (TDSE) may be written as (with h̄ = 1, and m = 1)

i∂�(�r, t)/∂t = [− 1
2∇2 + U(�r, t)]�(�r, t). (1)

This equation can be solved by a variety of well-developed numerical techniques; e.g., upon
writing the wavefunction as a sum of its real and imaginary parts

�(�r, t) ≡ ψR(�r, t) + iψI (�r, t) (2)

equation (1) becomes

∂ψR(�r, t)/∂t = [− 1
2∇2 + U(�r, t)]ψI (�r, t) (3)

∂ψI (�r, t)/∂t = [
+ 1

2∇2 − U(�r, t)]ψR(�r, t). (4)

This coupled pair of partial differential equations can then be solved on a fixed spatial grid of
points, using a predictor–corrector or a Bulirsch–Stoer method [1], i.e. as an alternative to the
well-known Crank–Nicholson algorithm.

Such a finite-difference approach to the solution of a partial differential equation is
equivalent to the solution of a set of 2N coupled ordinary differential equations, where N is
the number of grid points on which the wavefunction is defined. In three dimensions, these
‘grid points’ could consist of an expansion of the wavefunction in spherical harmonics, along
with a discretization of the radial coordinate. In this formulation, the dependent variables are
the values of the real and imaginary parts of the wavefunction at each grid point, labelled by
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�,m and k, where rk = k�r , and �r is the size of the radial step; see [1] for a more complete
description.

Then, after making the replacements, ψR(�r, t) = φR(�r, t)/r , and ψI (�r, t) = φI (�r, t)/r ,
the numerical solution of these equations is straightforward. Not only are the 2N equations
linear in the real and imaginary parts of the wavefunction, but the wavefunction itself is usually
a fairly smooth function of the spatial coordinates and the time; e.g., both φR → 0 and φI → 0,
as r → 0, even for particles moving in Coulomb potentials. (Generally, it may be expected
that linearity and smooth behaviour are not two completely independent characteristics of
these equations.)

It is important to note that for three-dimensional problems, N can easily attain values
of 10 000 or more, even for a single particle moving in an external field. Consequently, for
two mutually interacting quantum particles, each with a full range of motion, this method is
computationally very demanding. For three or more mutually interacting quantum particles,
each with a full range of motion, the method is, as of this writing, still quite impractical.

An alternate formulation of this problem is due to Madelung [2] and Bohm [3]. Writing
the wavefunction of equation (2) as

�(�r, t) = exp(C(�r, t) + iS(�r, t)) (5)

where C and S are both purely real functions of the spatial coordinates and the time, one arrives
at the following pair of coupled partial differential equations:

∂C/∂t = −∇C · ∇S − 1
2∇2S (6)

∂S/∂t = − 1
2 |∇S|2 + 1

2 (|∇C|2 + ∇2C) − U. (7)

Then, with definitions of the ‘quantum potential’, Q,

Q ≡ − 1
2 (|∇C|2 + ∇2C) (8)

and the ‘velocity’, �v,

�v(�r, t) ≡ ∇S (9)

equations (6) and (7) become

∂C/∂t = −�v · ∇C − 1
2∇ · �v (10)

∂S/∂t = − 1
2v2 − (Q + U). (11)

Upon taking the gradient of both sides of equation (11), one also has an equation for the
velocity:

∂ �v/∂t = −�v · ∇ �v − ∇(Q + U). (12)

Now, as for the conventionally written TDSE, one can formulate an approach to the
numerical solution of equations (10) and (11), or equations (10) and (12), by first defining the
dependent variables C and S, or C and �v, on a fixed grid of points. As before, in this way, a
pair of coupled partial differential equations is transformed into an equivalent set of coupled
ordinary differential equations. However, one suspects that the solution of these equations
might not now be so straightforward since the equations are nonlinear.

And, indeed, this is usually found to be the case. Even though C is often found to
be reasonably well behaved, Q is usually not well behaved. Small amplitude, rapid spatial
variations in C are amplified into large amplitude, rapid spatial variations in Q. These, in turn,
appear as large amplitude, rapid spatial variations in both S and �v.
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In an attempt to remove some of the nonlinearity from these equations, one may allow
next for the fact that, in a moving or Lagrangian coordinate system,

d/dt = ∂/∂t + �v · ∇. (13)

Upon substitution of this relationship in equations (10) and (11), one obtains the transformed
pair of equations

dC/dt = − 1
2∇ · �v (14)

dS/dt = 1
2v2 − (Q + U) (15)

from which the advective terms are now absent. Moreover, one can now solve for C directly,
at least in a formal sense, obtaining

C(�r, t) = C(�r, 0) − 1

2

∫ t

0
dt ′ ∇ · �v(�r, t ′) (16)

where the integration over t ′ is to be performed along the (unknown) trajectory, labelled by �r
and �v. And, instead of equation (12), one has the equation of motion

d�v/dt = −∇(Q + U) (17)

which is to be solved in the Lagrangian, or moving frame, provided that C, and therefore
Q, can be obtained simultaneously. This is the essence of the quantum trajectory method
(QTM) [4].

In practice, one simultaneously tracks an ensemble of ‘particle elements’, each element
being labelled by values of �r and �v, and a whole ensemble representing a single real quantum
particle. The density within the ensemble must be everywhere large enough to allow for the
accurate calculation of spatial gradients, up to third order, locally, i.e. in the neighbourhood
of each element. This usually requires a strategy for adding and subtracting elements to and
from the set being tracked, as local element densities fluctuate with time.

However, Q is again usually so badly behaved that this is also a difficult problem. In
practice, even a single real particle moving in one dimension is difficult by this method, at
least for interesting systems, e.g., photoionization of an initially bound electron by a weak, or
moderately strong, external field. By contrast, solution of the TDSE for such a one-particle
system is almost always straightforward.

For general applications involving many quantum particles, moving in three spatial
dimensions, and for states evolving away from equilibrium, or for states moving between
equilibria, and while retaining the formalism of the QTM, one attempts to make some progress
by invoking the ansatz of Fermi molecular dynamics (FMD). By its nature, this involves some
rather drastic approximations to Q.

In developing approximations to Q, one must realize that it contains all the information
essential to a quantum description of what would be otherwise a purely classical problem; e.g.,
Q contains both the effects of the Heisenberg uncertainty principle and the Pauli exclusion
principle.

There are also subsidiary conditions which any viable approximation to Q must satisfy.
For example, if U contains no explicit time dependence, and if � is an eigenstate of a
Hamiltonian for which U is the entire potential, then [5]

Q = −U + ε (18)

where ε is the eigenenergy. Evidently, for such cases, it must then also be true that both

�v(�r, t) = 0 (19)



6016 K J LaGattuta

and

d�v(�r, t)/dt = 0 (20)

since S = −εt is independent of �r; i.e. for a single quantum particle.
Continuing in terms of the variables already defined, one may also write, generally,

�v(�r, t) = ∇S(�r, t) = 1
2 [�∗(−i∇)�/|�|2 + c.c.] (21)

following which the Hamiltonian itself may be written as

H = 1
2

[
�∗(− 1

2∇2)�/|�|2 + c.c.
]

+ U (22)

or

H(�r, t) = 1
2v2(�r, t) + Q(�r, t) + U(�r, t). (23)

We now consider those cases for which a purely Coulombic quantum system is initially
(at t = 0) in an eigenstate of a time-independent Hamiltonian, while for t > 0 an additional
time-dependent interaction ensues, namely,

H = H0 + Q (24)

H0 =
∑

i

p2
i

/
2mi + U + δU (25)

U =
∑

i

∑
j<i

(ZiZj/rij ) (26)

δU =
∑

i

δU(�ri, t) (27)

for an assembly of particles labelled by i, where the system is initially in an eigenstate of∑
i p2

i

/
2mi + U .

Then, in order to be able to solve the equations of motion for the velocities and coordinates
of all the particles, at every time t > 0 one has recourse to the following drastic approximation
to Q, which is the ansatz of FMD [6]:

Q ≡ VH + VP (28)

VH = AH

∑
i

∑
j<i

(
1
/
r2
ij

)
exp

(−BH r4
ijp

4
ij

)
(29)

VP = AP

∑
i

∑
j<i

(
1
/
r2
ij

)
exp

(−BP r4
ijp

4
ij

)
(30)

where, in addition to the relative spatial coordinates, relative momenta now appear,

rij = |�ri − �rj | (31)

pij = |mj �pi − mi �pj |/(mi + mj) (32)

and where the so-called Heisenberg and Pauli potentials, VH and VP , are defined.
Thus, Q is approximated by an explicit function of coordinates and momenta, of fixed

algebraic form. This approximation replaces the exact Q, which is an unknown function of
spatial coordinates and a functional of unknown velocities; i.e., the exact Q(�r, t) depends on
C(�r, t), which itself depends on values of ∇ · �v(�r, t ′) for all t ′ < t .
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After these preliminaries, the FMD equations of motion for a system of interacting
particles can be recast as Hamilton’s equations:

d�ri(t)/dt = ∇�pi
H (33)

d �pi(t)/dt = −∇�ri
H. (34)

The purely repulsive Heisenberg potential VH acts to stabilize the ground, and singly
excited states, of multielectron atoms or ions against unphysical autoionization. VH is allowed
to operate only between electrons and nuclei. It contains two positive constants, AH and BH ,
which can be selected to match physical constraints, e.g., the binding energy of the electron,
and the fact that (for t = 0) both �v = 0 and d�v/dt = 0, since Q ∼ −U .

The purely repulsive Pauli potential VP acts to distribute electrons bound in an atom
or ion into shells. It acts only between electrons of the same ‘spin’. VP also contains two
positive constants, AP and BP , which again can be selected to match physical constraints [6].
(For an eigenstate of a multielectron atom, the four constants can be picked to give a good
representation of the total energy, and the fact that �vi = 0 and d�vi/dt = 0 for all electrons.)

For work in which precision is not essential, it has sufficed to pick the four constants
AH,BH ,AP and BP such that the first ionization potential, according to FMD, agrees,
generally, to within 20%, with its corresponding Hartree–Fock value, for all atoms throughout
the periodic table [7].

To summarize, some advantages of FMD are:

(a) Multielectron atoms and ions, in ground or singly excited states, are stabilized against
unphysical autoionization by the Heisenberg potential VH [6].

(b) Atoms and ions generally possess good values of the ionization potential [7].
(c) Multielectron atoms and ions possess a shell structure, arising from the Pauli potential VP

[6, 7].
(d) Radii of individual electronic shells are, generally, physically reasonable [7].
(e) A system of atoms, ions and electrons, all interacting, can be simulated successfully by

FMD with a set of coupled ordinary differential equations. This system of atoms, ions
and electrons can be inhomogeneous spatially, and exhibit time-dependent behaviour.
Fluctuations about local averages are fully accessible by this method. Fluctuations can be
either spatial or temporal, or both. Transport coefficients can be computed directly from
the simulation.

Examples of systems which have been successfully simulated with FMD are:

(i) The dynamics of the ionization of multielectron atoms, and of clusters of atoms, by short
pulse, long wavelength, laser beams has been simulated [8–10].

(ii) The equilibrium net positive charge on a fast, highly charged, nucleus has been simulated,
for the case where the nucleus propagates through a gaseous medium [11].

(iii) Temperature equilibration rates for electron and ion components of a plasma initially out
of equilibrium have been simulated [12].

Comparison of these FMD results with the outcome of calculations based on existing
rigorous methods has not yet been accomplished, i.e. to the extent that methods such as
nonequilibrium density-functional theory do indeed already exist.
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